ECS455: Chapter 5 OFDM

5.3 Implementation: DFT and FFT

Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:

BKD 3601-7
Wednesday 15:30-16:30
Friday 9:30-10:30

Discrete Fourier Transform (DFT)

Transmitter produces

$$
s(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k t}{T_{s}}\right), \quad 0 \leq t \leq T_{s}
$$

Sample the signal in time domain every T_{s} / N gives

$$
\begin{aligned}
s[n] & =s\left(n \frac{T_{s}}{N}\right)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k}{\not / s} n \frac{\not / s}{N}\right) \\
& =\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k n}{N}\right)=\sqrt{N} \operatorname{IDFT}\{S\}[n]
\end{aligned}
$$

We can implement OFDM in the discrete domain!

Discrete Fourier Transform (DFT)

In DFT, we work with N-point signal (finite-length sequence of length N) in both time and frequency domain. To simplify the definition we define

$$
\psi_{N}=e^{j \frac{2 \pi}{N}}
$$

and the DFT matrix $Q=\Psi_{N}$ whose element on the p th row and q th column is given by $\psi_{N}^{-(p-1)(q-1)}$:

The " -1 " are there because we start from row 1 and column 1.

$$
\Psi_{N}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \psi_{N}^{-1} & \psi_{N}^{-2} & \cdots & \psi_{N}^{-(N-1)} \\
1 & \psi_{N}^{-2} & \psi_{N}^{-4} & \cdots & \psi_{N}^{-2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \psi_{N}^{-(N-1)} & \psi_{N}^{-2(N-1)} & \cdots & \psi_{N}^{-(N-1)(N-1)}
\end{array}\right]
$$

Key Property:

$$
\Psi_{N}^{-1}=\frac{1}{N} \Psi_{N}^{*} . \text { Equivalently, } \Psi_{N}^{-1} \Psi_{N}=I_{N} . \quad \frac{1}{\sqrt{N}} \Psi_{N} \text { is a unitary matrix }
$$

DFT

Definition 5.3. The N-point DFT of an N-point signal (column vector) x is given by

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j n k \frac{2 \pi}{N}}=\sum_{n=0}^{N-1} x[n] \psi_{N}^{-n k} ; 0 \leq k<N .
$$

The inverse DFT is given by

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \psi_{N}^{n k} \xlongequal[\mathrm{DFT}^{-1}]{\stackrel{\mathrm{DFT}}{0 \leq n<N}} \underset{\substack{0 \leq k<N}}{ } X[k]=\sum_{n=0}^{N-1} x[n] \psi_{N}^{-n k}
$$

In matrix form,

$$
x=\frac{1}{N} \Psi_{N}^{*} X \underset{\mathrm{DFT}^{-1}}{\stackrel{\mathrm{DFT}}{\rightleftharpoons}} X=\Psi_{N} \times x .
$$

DFT: Example

DTFT to DFT

- Start with a sequence in discrete time $x[n]$.
- Z-transform: $X(z)=\sum_{n} x[n] z^{-n}$
- Discrete-Time Fourier Transform: $X\left(e^{j \omega}\right)=\sum_{n} x[n] e^{-j \omega n}$
- N points in time domain: $X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}$
- DFT: $X_{k}=\left.X\left(e^{j \omega}\right)\right|_{\omega=\sigma_{k}=\frac{k}{N} 2 \pi}=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}$

Efficient Implementation: (I)FFT

[Bahai, 2002, Fig. 2.9]
An N-point FFT requires only on the order of $N \log N$ multiplications, rather than N^{2} as in a straightforward computation.

FFT

- The history of the FFT is complicated.
- As with many discoveries and inventions, it arrived before the (computer) world was ready for it.
- Usually done with N a power of two.
- Very efficient in terms of computing time
- Ideally suited to the binary arithmetic of digital computers.
- Ex: From the implementation point of view it is better to have, for example, a FFT size of 1024 even if only 600 outputs are used than try to have another length for FFT between 600 and 1024.

References: E. Oran Brigham, The Fast
Fourier Transform, Prentice-Hall, 1974.

DFT Samples

$$
s(t)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k t}{T_{s}}\right), \quad 0 \leq t \leq T_{s}
$$

- Here are the points $s[n]$ on the continuous-time version $s(t)$:

$$
\begin{aligned}
s[n] & =s\left(n \frac{T_{s}}{N}\right) \\
& =\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k n}{N}\right) \\
& =\sqrt{N} \operatorname{IDFT}\{S\}[n] \\
& 0 \leq n<N
\end{aligned}
$$

Oversampling

Oversampling (2)

- Increase the number of sample points from N to $L N$ on the interval $\left[0, T_{s}\right]$.
- L is called the over-sampling factor.

$$
\begin{gathered}
s[n]=s\left(n \frac{T_{s}}{N}\right) \\
0 \leq n<N
\end{gathered} \quad \square \quad \begin{gathered}
s^{(L)}[n]=s\left(n \frac{T_{s}}{L N}\right) \\
0 \leq n<L N
\end{gathered}
$$

$$
\begin{aligned}
s^{(L)}[n] & =\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k}{\not / /} n \frac{T / s}{L N}\right)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k n}{L N}\right) \\
& =\frac{1}{\sqrt{N}} L N\left(\frac{1}{L N} \sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k n}{L N}\right)\right) \quad \text { Zero padding: } \\
& =L \sqrt{N}\left(\frac{1}{L N}\left(\sum_{k=0}^{N-1} S_{k} \exp \left(j \frac{2 \pi k n}{L N}\right)+\sum_{k=N}^{N L-1} 0 \exp \left(j \frac{2 \pi k n}{L N}\right)\right)\right) \quad \tilde{S}_{k}= \begin{cases}S_{k}, & 0 \leq k<N \\
0, & N \leq k<L N\end{cases} \\
& =L \sqrt{N}\left(\frac{1}{L N} \sum_{k=0}^{N L-1} \tilde{S}_{k} \exp \left(j \frac{2 \pi k n}{L N}\right)\right)=L \sqrt{N} \operatorname{IDFT}\{\tilde{S}\}[n]
\end{aligned}
$$

Oversampling: Summary

Zero padding:

$$
\tilde{S}_{k}= \begin{cases}S_{k}, & 0 \leq k<N \\ 0, & N \leq k<L N\end{cases}
$$

OFDM implementation by IFFT/FFT

OFDM with Memoryless Channel

$$
h(t)=\beta \delta(t)
$$

$$
r(t)=h(t) * s(t)+w(t)=\beta s(t)+w(t)
$$

Sample every T_{s} / N
Additive white Gaussian noise

$$
\begin{array}{rl}
r[n]= & \beta s[n]+w[n] \\
\mathrm{FFT} & s[n]=\sqrt{N} \operatorname{IFFT}\{S\}[n] \\
R_{k} & \downarrow \\
= & \frac{1}{\sqrt{N}} \operatorname{FFT}\{y\}[n]=\beta S_{k}+\frac{1}{\sqrt{N}} W_{k}
\end{array}
$$

Sub-channel are independent.
(No ICI)

Channel with Finite Memory

Discrete time baseband model:

$$
y[n]=\left\{h^{*} s\right\}[n]+w[n]=\sum_{m=0}^{v} h[m] s[n-m]+w[n]
$$

where $h[n]=0$ for $n<0$ and $n>v$

$$
w[n]^{i . i . d .} \sim \operatorname{CN}\left(0, N_{0}\right)
$$

We will assume that $v \ll N$

Remarks:
$Z=X+j Y$ is a complex Gaussian if X and Y are jointly Gaussian.
If X, Y is i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$, then $Z=X+i Y \sim \mathcal{C N}\left(0, \sigma_{Z}^{2}\right)$ where $\sigma_{Z}^{2}=2 \sigma^{2}$ with

$$
f_{Z}(z)=f_{X, Y}(\operatorname{Re}\{z\}, \operatorname{Im}\{z\})=\frac{1}{\pi \sigma_{Z}^{2}} e^{-\frac{| |^{2}}{\sigma_{Z}^{2}}} .
$$

OFDM Architecture

